Assignment 9

Hand in no. 4, 5, 7 and 8 November 21.

1. Consider the problem of minimizing $f(x, y, z)=(x+1)^{2}+y^{2}+z^{2}$ subjecting to the constraint $g(x, y, z)=z^{2}-x^{2}-y^{2}-1, z>0$. First solve it by eliminating z and then by Lagrange multipliers.
2. Let f, g_{1}, \cdots, g_{m} be C^{1}-functions defined in some open U in \mathbb{R}^{n+m}. Suppose $\left(x_{0}, y_{0}\right)$ is a local extremum of f in $\left\{(x, y) \in U: g_{1}(x, y)=\cdots=g_{m}(x, y)=0\right\}$. Assuming that $D_{y} G\left(x_{0}, y_{0}\right)$ is invertible where $G=\left(g_{1}, \cdots, g_{m}\right)$, show that there are $\lambda_{1}, \cdots, \lambda_{m}$ such that

$$
\nabla f+\lambda_{1} \nabla g+\cdots+\lambda_{m} \nabla g_{m}=0
$$

at $\left(x_{0}, y_{0}\right)$.
3. Solve the IVP for $f(t, x)=\alpha t\left(1+x^{2}\right), \alpha>0, t_{0}=0$, and discuss how the (largest) interval of existence changes as α and x_{0} vary.
4. Let $f \in C(R)$ where R is a closed rectangle. Suppose x solves $x^{\prime}=f(t, x)$ for $t \in(a, b)$ with $(t, x(t)) \in R$. Show that x can be extended to be a solution in $[a, b]$.
5. Let $f \in C(R)$ where R is a closed rectangle satisfy a Lipschitz condition in R. Suppose that x solves $x^{\prime}=f(t, x)$ for $t \in[a, b]$ where $(b, x(b))$ lies in the interior of R. Show that there is some $\delta>0$ such that x can be extended as a solution in $[a, b+\delta]$.
6. Provide a proof to Theorem 3.15 (Picard-Lindelof theorem for systems).
7. Let $\mathbf{e}_{n}=(0, \cdots, 0,1,0, \cdots$,$) by the sequence with 1$ at the n-th place and equal to 0 . Consider the sequence formed by these \mathbf{e}_{j} 's. Show that it has no convergent subsequences in the space $l^{p}, 1 \leq p \leq \infty$ Recall that l^{p} is the space consisting of all sequences $\mathbf{a}=\left\{a_{n}\right\}$ satisfying $\|\mathbf{a}\|_{p}=\left(\sum_{n}\left|a_{n}\right|^{p}\right)^{1 / p}<\infty$ and $\|\mathbf{a}\|_{\infty}=\sup _{n}\left|a_{n}\right|$.
8. Consider $\left\{f_{n}\right\}, f_{n}(x)=x^{1 / n}$, as a subset in $C[0,1]$. Show that it is a closed, bounded, but has no convergent subsequence in $C[0,1]$.
9. Prove that $\{\cos n x\}_{n=1}^{\infty}$ does not have any convergent subsequence in $C[0,1]$.
10. Show that any finite set in $C(\bar{G})$ is bounded and equicontinuous.

